

A Folk Theorem for Discounted Repeated Games

Game Theory Course: Jackson, Leyton-Brown & Shoham

A (Simple) Folk Theorem for Discounted Repeated and the second and

- Consider a finite normal form game G = (N, A, u).
- Let $a = (a_1, ..., a_n)$ be a Nash equilibrium of the stage game G

If $a = (a_1, ..., a'_n)$ is such that $u_i(a) > u_i(a)$ for all i, then there exists a discount factor $\beta < 1$, such that if $\beta_i \ge \beta$ for all i, then there exists a subgame perfect equilibrium of the infinite repetition of G that has a' played in every period on the equilibrium path.

A (Simple) Folk Theorem for Discounted Repeated and the second se

- Outline of the Proof:
- Play a' as long as everyone has in the past.
- If any player ever deviates, then play a forever after (Grim Trigger).
- Check that this is a subgame perfect equilibrium for high enough discount factors:

A (Simple) Folk Theorem for Discounted Repeated and the second and

• Check that this is a subgame perfect equilibrium for high enough discount factors:

A (Simple) Folk Theorem for Discounted Repeated, and the second an

- Check that this is a subgame perfect equilibrium for high enough discount factors:
 - Playing *a* forever if anyone has deviated is a Nash equilibrium in any such subgame.

A (Simple) Folk Theorem for Discounted Repeated and the second se

- Check that this is a subgame perfect equilibrium for high enough discount factors:
 - Playing *a* forever if anyone has deviated is a Nash equilibrium in any such subgame.
 - Will someone gain by deviating from a' if nobody has in the past?

A (Simple) Folk Theorem for Discounted Repeated and the second se

- Check that this is a subgame perfect equilibrium for high enough discount factors:
 - Playing *a* forever if anyone has deviated is a Nash equilibrium in any such subgame.
 - Will someone gain by deviating from a' if nobody has in the past?
 - Maximum gain from deviating is $M = \max_{i,a_i''} u_i(a_i'',a_{-i}') u_i(a')$

A (Simple) Folk Theorem for Discounted Repeated

- Check that this is a subgame perfect equilibrium for high enough discount factors:
 - Playing *a* forever if anyone has deviated is a Nash equilibrium in any such subgame.
 - Will someone gain by deviating from a' if nobody has in the past?
 - Maximum gain from deviating is $M = \max_{i,a_i''} u_i(a_i'',a_{-i}') u_i(a')$
 - minimum per-period loss from future punishment is $m = \min_i u_i(a') u_i(a)$ (why this?)

A (Simple) Folk Theorem for Discounted Repeated, and a Games

- Check that this is a subgame perfect equilibrium for high enough discount factors:
 - Playing *a* forever if anyone has deviated is a Nash equilibrium in any such subgame.
 - Will someone gain by deviating from a' if nobody has in the past?
 - Maximum gain from deviating is $M = \max_{i,a_i''} u_i(a_i'',a_{-i}') u_i(a')$
 - minimum per-period loss from future punishment is $m = \min_i u_i(a') u_i(a)$ (why this?)
 - If deviate, then given other players' strategies, the maximum possible net gain is $M-m\frac{\beta_i}{1-\beta_i}$

A (Simple) Folk Theorem for Discounted Repeated

- Check that this is a subgame perfect equilibrium for high enough discount factors:
 - Playing a forever if anyone has deviated is a Nash equilibrium in any such subgame.
 - Will someone gain by deviating from a' if nobody has in the past?
 - Maximum gain from deviating is $M = \max_{i,a_i''} u_i(a_i'',a_{-i}') u_i(a')$
 - minimum per-period loss from future punishment is $m = \min_i u_i(a') u_i(a)$ (why this?)
 - If deviate, then given other players' strategies, the maximum possible net gain is $M-m\frac{\beta_i}{1-\beta_i}$
 - Deviation is not beneficial if $\frac{M}{m} \leq \frac{\beta_i}{1-\beta_i}$ or $\beta_i \geq \frac{M}{M+m}$ for all i.

Repeated Prisoner's Dilemma

• More complicated play: something to think about

	С	D
С	3,3	0,10
D	10,0	١,١

Repeated Games

- Players can condition future play on past actions
- Brings in many(!) equilibria: Folk Theorems
- Need key ingredients
 - Some (fast enough) observation about how others behave
 - Sufficient value to the future (limit of the means extreme value) or high enough discount factor